
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) 

 e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 4 Ver. IV (Jul. – Aug. 2017), PP 64-70 

www.iosrjournals.org 

DOI: 10.9790/1676-1204046470                                         www.iosrjournals.org                                     64 | Page 

 

Robust H2 Controller Design for Damping Power System 

Oscillations 
 

Ade Elbani, Hilda, Yohannes M Simanjuntak, Hardiansyah
* 
 

 (Department of Electrical Engineering, University of Tanjungpura, Indonesia) 

Corresponding Author: Hardiansyah 

 

Abstract: This paper presents robust H2 controller design for damping power system oscillations. The 

proposed controller uses full state feedback. The feedback gain matrix is obtained as the solution of a linear 

matrix inequality (LMI). The technique is illustrated with applications to the design of stabilizer for a multi-

machine power system. The LMI based control ensures adequate damping for widely varying system operating 

conditions and is compared with conventional power system stabilizer (CPSS). 
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I. INTRODUCTION 
Modern power systems are usually large nonlinear systems, which are often subject to low frequency 

oscillations when working under some adverse loading conditions. The oscillation may sustain and grow to 

cause system separation if no adequate damping is available. To enhance system damping, the generators are 

equipped with power system stabilizers (PSSs) that provide supplementary feedback stabilizing signals in the 

excitation systems. PSSs extend the power system stability limit by enhancing the system damping of low 

frequency oscillations associated with the electromechanical modes [1]. Many approaches are available for PSS 

design, most of which are based either on classical control methods [1-3] or on intelligent control strategies [4-

6]. 

Power systems continually undergo changes in the operating condition due to changes in the loads, 

generation and the transmission network resulting in accompanying changes in the system dynamics. A well 

designed stabilizer has performs satisfactorily in the presence of such variations in the system. In other words, 

the stabilizer should be robust to changes in the system over its entire operating range. 

The nonlinear differential equations governing the behavior of a power system can be linearized about 

a particular operating point to obtain a linear model which represents the small signal oscillatory response of the 

power system. Variations in the operating condition of the system result in corresponding variations in the 

parameters of the small signal model. A given range of variations in the operating conditions of a particular 

system thus generates a set of a linear models each corresponding to one particular operating condition. Since, 

any given instant, the actual plant could correspond to any model in this set, a robust controller would have to 

impart adequate damping to each one of this entire set of linear models. 

Robust control technique has been applied to power system controller design since late 1980s. The 

main advantage of this technique is that it presents a natural tool for successfully modeling plant uncertainties. 

Some of those efforts have been contributed to design robust controllers for PSS and/or FACTS devices using 

H concept such as mixed-sensitivity [7];  -synthesis [8] and H concept such as LQG [9]. In these studies, 

many classical control objectives such as disturbance attenuation, robust stabilization of uncertain systems are 

expressed in terms of H performance and tackled by H synthesis techniques. All these efforts produce a 

controller, which is “robust” in the sense that these controllers provide added damping to the system under a 

wide range of load variations. 

Design methods based on the H norm of the closed-loop transfer function have gained popularity, 

because unlike H methods (best known as LQG), they offer a single framework in which to deal both with 

performance and robustness. On the other hand, since a H cost function offers a more natural way of 

representing certain aspects of the system performance, improving the robustness of H based design methods 

against perturbations of the nominal plant is a problem of considerable importance for practical applications 

[10].In the robust H approach, the controller is designed to minimize an upper bound on the worst case H norm 

for a range of admissible plant perturbations. One of the advantages of linear matrix inequality (LMI) is mixing 

the time and frequency domain objectives [11-13]. This paper proposes a robust H controller design with 
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regional pole constraints for damping power system oscillations base on linear matrix inequality. The efficiency 

of an LMI-based design approach as a practical design tool is illustrated with case studies, including a 3-

machine 9-bus power system. 

 

II. PROBLEM FORMULATION 
Stability is a minimum requirement for control system. However, in most practical situations, a good 

controller should also deliver sufficiently fast and well-damped time responses. A customary way to guarantee 

satisfactory transients (or dynamics) is to place the closed-loop poles in a suitable region of the complex s-plane. 

 

2.1.   LMI formulation for H2 performance 

Let us consider the following linear system: 

Cxz

BwAxx





         
(1) 

where A is stable, x is the state, w is the input and z is the exit, the 2H norm of the transfer function from w to 

z, )(sH zw , is 
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where * denotes the transpose conjugate operator. One way of calculating this norm, among many others, is 

through the following semidefinite program: 

 min )( TCPCtrace  
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        (3) 

The constraints above define a nonempty set if and only if A is a stable matrix. In fact, it is easy to see 

that if the last problem is feasible for some matrix P then there exists a matrix Q = Q
T
> 0 such that the 

Lyapunov equation 

0 QPAAP T

        
(4) 

is satisfied, thus A is stable. This fact can be explored in several ways in control design and many of the 

resulting problems reduce to semidefinite programs. 

The design problem treated in this paper consists of finding an internally stabilizing controller that 

minimizes a worst-case H -norm constraint. Consider the control system shown in Figure 1. The generalized 

plant P has a state space representation 

uDxCz

uBwBAxx




        (5) 

where 012 DDT , nRx , qRw ,
pRz and mRu , the 2H state feedback design problem can be stated as 

“find a gain K such that the input u = Kx stabilizes the system above and minimizes the 2H norm of the transfer 

function )(sH zw “. The substitution of this input in the norm calculation problem given before provides, 
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So, defining the variables Y = Y
T
 := P, L := K P and W = W

T
 and using Schur's complement it is possible to 

rewrite the problem above as the LMI problem 

 min  )(Wtrace          (8) 

012  TTTT BBBLLBYAAY       (9) 

0
               

                       

121


















WLDYC

DLYCY TTT

      

(10) 

 

 

 

 

 

 

 



Robust H2 Controller Design for Damping Power System Oscillations 

DOI: 10.9790/1676-1204046470                                         www.iosrjournals.org                                     66 | Page 

 

 

 

 

 

 

 

 

 

Figure1 Generalized plan 

 

2.2.   LMI formulation for regional pole constraints 

In the synthesis of control systems, meeting some desired transient performance objectives (to ensure 

fast and well-damped transient response, reasonable feedback gain, etc.) should be considered. Generally, 

2H norm design does not directly deal with the transient response of the closed-loop system. In contrast, a 

satisfactory transient response can be guaranteed by confining its poles in a prescribe region. For many practical 

problems, exact pole assignment may not be necessary; it suffices to locate the closed-loop poles in a prescribe 

sub-region in the complex left half plane. 

Definition 1: LMI stability region [14]. A subset D of the complex plane is called an LMI region if there exist a 

symmetric matrix mm
kl R  ][  and a matrix mm

kl R  ][  such that 

}0)(:{  zfCzD D         
(11) 

where the characteristic function )(zf D  is given by 
mlkklklklD zzzf  ][)(   ( Df  is valued in the 

space of m x m Hermitian matrices). 

The location of the closed-loop poles of )( KBA in (7) concern with the performance of the closed-

loop system, i.e., the stability, the decay rate, the maximum overshoot, the rise time and settling time. Therefore, 

it is interesting work for control engineers to design the control gain K such that the closed-loop poles of 

)( KBA  lie in a suitable sub-region of the left half plane. The interesting region for control purposes is the 

set ),,(  rS of complex number jyx  such that  

,  ,0 rjyxx   and yx )tan(
     

(12) 

as shown in Figure 2. Confining the closed-loop poles to this region ensures a minimum decay rates α, a 

minimum damping ratio  cos , and a maximum undamped natural frequency  sinrd   (θ in radian). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Region ),,(  rS  

 

The LMI formulations for the poles of )( KBA lie in the region ),,(  rS are characterized as the 

following LMIs [14], [15]: if there exists symmetric 0P  such that 
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with L=KP, Y=P, the above LMIs are equivalent to 
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From the analysis above, if there exists Y and L for (16)-(18), then the poles of )( KBA  lie in the 

region ),,(  rS . 

 

2.3.   H2 control with regional pole constraints 

The combination objectives of robust 2H control with regional pole constraints can be characterized as 

follows: 

)(   min Wtrace
LY

 

s.t.  (9), (10) and (16)-(18)                             (19) 

From analysis above, the most important task in this paper is to find the variable Y and L, and can be solved 

using standard optimization techniques. Once a feasible solution (Y, L) satisfying (19) is found, the required 

state feedback gain matrix can be computed as 
 LYK . 

 

III. SIMULATION RESULTS AND DISCUSSION 
3.1.   Dynamic model of the power system 

Neglecting the effect of damper winding, stator transient and resistance, the synchronous machine 

together with its excitation system is modeled using the following 4
th

 order non-linear dynamic equations [16]: 

1))-((
1

 DTT
M

em 
       

(20) 

1)-( b
        

(21) 

 ''

'
0

' )(
1

qdddfd

d

q EixxE
T

E                     (22) 

 fdetrefA
A

fd EuvvK
T

E  )(
1       (23) 

It can be seen that this model is non-linear. To permit analysis and control of the power system, the 

model is linearised around the operating point. The state variables of this model are fdq EE  ,,, ' , 

respectively, angular speed, rotor angle, voltage behind transient, and excitation voltage. In this study, we 

assumed that all state variables are available used for feedback.  

 

3.2.   A 3-machine 9-bus system 

In this part of the study, the 3-machine 9-bus power system shown in Figure 3 is considered. Details of 

the system data are given in [17]. Each machine has been represented by 3rd-order generators equipped with a 

static exciter. Without power system stabilizers, the system damping is poor and the system exhibits highly 

oscillatory response. It is therefore necessary to install one or more PSS to improve the dynamic performance. 
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To identify the optimum locations of PSSs, the participation factor method [18] was used. The results of the 

method indicate that G2 and G3 are the optimum locations for installing PSSs to damp out the 

electromechanical modes of oscillations. 
To design the proposed controller, three operation conditions, i.e. a heavy loading condition, a nominal 

loading condition, and a light loading condition, are considered as shown in Table 1. The open loop eigenvalues 

(dominant eigenvalues) of the study system for three operating conditions are given in Table 2. As each pair of 

conjugate eigenvalues corresponds to an oscillation mode, there are two modes in this study system. Mode 1 and 

2 are the rotor oscillation modes (the electromechanical modes). It can be seen that the damping of the rotor 

oscillation modes for all the operating conditions are poor. In the power system, a damping ratio, ζ of at least 

10% and the real part of eigenvalue not greater than –0.5 for the troublesome low frequency electromechanical 

mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Three-machine nine-bus power system [17] 

 

Table 1 Loading condition (in p.u) 
 Heavy Nominal Light 

Generator P Q P Q P Q 

G1 1.330 0.630 0.716 0.270 0.362 0.162 
G2 1.900 0.361 1.630 0.066 0.800 -0.109 

G3 1.200 0.120 0.850 -0.109 0.450 -0.204 

Load       
A 1.750 0.700 1.250 0.500 0.650 0.550 

B 1.200 0.400 0.900 0.300 0.450 0.350 

C 1.400 0.500 1.000 0.350 0.500 0.250 
       

 

Table 2 Open loopeigenvalues of the study system 
Modes Heavy Nominal Light 

1 
2 

-0.187±j 7.68    
-0.970±j 14.10   

-0.241±j 7.71  
-0.842±j 14.10   

-0.399±j7.71 
-0.585±j 14.10 

 

In order to improve the damping of electromechanical modes, a decentralized controller was designed 

for present system at the nominal loading conditions based on the proposed design technique in Section 2. In 

this objective, each of the generators is fitted with a partial state feedback controller so that only locally 

available states are feedback at each generator. This implies that the state feedback matrix K of the overall 

system are block diagonal. The locally measured states: fdq EE  ,,, '   is feedback at the AVR reference 

input of each machine after multiplication by suitable feedback gains. The LMI problem was constructed by 

writing LMI (19). The feasibility problem was solved for (Y,L) and the required state feedback matrix was 

obtained as 
 LYK . If the matrix L and Y used in LMI formulation are restricted to be block diagonal then 

the product 
LY  will also have a block diagonal structure. 

In order to facilitate comparison with CPSS, the design and tuning of CPSS for this multi-machine 

system were used method in [19]. In this paper, a CPSS with transfer function, 

G1 

G2 G3 

Load A Load B 

Load C 

1 

2 3 

4 

5 6 

7 
8 

9 
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was used and the parameters of stabilizer have been tuned to provide an adequate amount of damping for mode 

of oscillation. The CPSS data for a multi-machine system is given in Table 3. The output of all CPSS is limited 

to ± 0.1 p.u. 

 

Table 3 CPSS parameters 
Gen# 

cK  wT  T  T  

2 

3 

83.24 

33.01 

8.0 

8.0 

0.329 

0.169 

0.140 

0.072 

 

By the similar above procedure, we can solve the eigenvalue problem in (19) with pole constraints in 

the region of S(1.6, 25, 1.369). The closed-loop eigenvalues are given in Table 4. It is quite clear that the system 

eigenvalues associated with the electromechanical modes have been successfully shifted to the region S with the 

proposed H2PSS. This demonstrates that the system damping with the proposed H2PSS is greatly enhanced. 

 

Table 4 Closed-loopeigenvalues of the study system 
Modes Heavy Nominal Light 

1 

2 

-4.420±j 8.26    

-2.510±j 9.82     

-4.880±j 7.86  

-3.584±j 10.25   

-3.360±j 7.40 

-4.720±j 12.52 

 

To demonstrate the capability of the proposed H2PSS to enhance system damping over a wide range of 

operating conditions, three different loading conditions were considered. A 10% step change in the reference 

voltage was applied at machine 2 (G2) as follows. 

a) Nominal loading condition: The dynamic response of the system is shown in Figure 4. It is obvious that the 

system performance with the proposed H2PSS is better than CPSS. 

b) Heavy loading condition: The simulation results are shown in Figure 5. The results here show the 

superiority of the proposed H2PSS to the CPSS. It can be concluded that the proposed H2PSS provides very 

good damping over a wide range of operating conditions. 

c) Light loading condition: The simulation results are shown in Figure 6. It is clear that the proposed H2PSS 

provide good damping characteristics to low-frequency oscillations and greatly enhance the dynamic stability of 

power system.  

 

 
Figure 4 Generator responses under nominal loading condition 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5 Generator responses under heavy loading condition 
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(a) 

 
(b) 

 
(c) 

Figure 6 Generator responses under light loading condition 

 

IV. Conclusion 
The design of robust H control with regional pole constraints for damping power systems oscillations 

based on linear matrix inequalities was presented in this paper. The performance evaluation of the proposed 

stabilizer on multi-machine power systems shows that this increased robustness could be achieved with 

reasonable feedback gain magnitudes. Further, in the multi-machine case, the control is decentralized and only 

locally measured variables are feedback at each generator. Simulation results show that the proposed stabilizers 

(H2PSS) can effectively enhance the damping of low frequency oscillations and perform better than 

conventional stabilizers (CPSS). 
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